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Abstract 

The complexity of the distribution of cholinergic innervation of the albuginea suggests that its structural pattern may 
exhibit multiple scaling rules rather than a single global scale. Therefore, the study of nerve fibers could be approached 
through multifractal analysis. The cholinergic fiber plexuses of the rat testicular albuginea, visualized by a histochemical 
technique for the detection of acetylcholine sterases, will be analyzed for the possible detection of their multifractal 
structure, calculating several types of multifractal spectra, namely multifractal spectrum f(α) versus α, and the 
generalized dimension DQ versus Q. In the present study, the results will be compared with the multifractal spectra of 
plexus models consisting of the elaboration of interconnected line lattices generated, either employing a binary matrix 
or using a tessellation matrix, and according to various realizations of randomly distributed points in a two-dimensional 
space. The results of this study suggest that the cholinergic nerve plexuses of the testicular albuginea of the rat show a 
multifractal behavior, and the multifractality of the real data is greater than that of the simulated networks. However, 
Voronoi tessellations models show a more remarkable similarity of the multifractal scale with the real data in 
comparison with those generated by a binary matrix. 

Keywords: Testicular albuginea; Cholinergic plexuses; Multifractals; Generalized fractal dimension; Simulated 
networks; Voronoi tessellations 

1 Introduction 

The testicular albuginea of the rat has some small nerve bundles, mainly located near the testicular mediastinum, and 
isolated nerve endings that are irregularly distributed throughout its area [1]. However, according to various authors, 
the highest proportion of nerve fibers is arranged with blood vessels of the tunica vasculosa [1]. Some findings of 
histochemical features of cholinergic innervation of rat albuginea were described in a study by Reoyo et al. [2] and could 
be summarized as follows: The tunica adventitia of the testicular artery that runs across the albuginea from the superior 
to the inferior testicular poles was seen to contain a rich plexus of acetylcholinesterase positive nerve fibers. In the 
mediastinum testis, collateral branches of this plexus formed a broad network with fibers ending beneath the rete testis 
epithelium. In its course along the testicular artery, the plexus gave rise to many other branches extending laterally over 
the testis without reaching its ventral portion. In turn, these branches originated another series of fibers running 
parallel to the longest testicular axis towards either the testis' superior or inferior poles. In summary, the testicular 
albuginea of the rat has an important plexus of cholinergic nerve fibers with a marked directional component following 
the testicular long axis. The length density, the absolute length of these fibers, and the degree of preferential orientation 
in a spatial direction (anisotropy) have already been studied [3]. However, the complexity of nerve ramifications and 
their possible fractal structure have not been addressed yet. As with other biological textures [4-7], the complexity of 
branching and distribution of nerve fibers in the testicular albuginea could be characterized by fractal geometry, and 
such geometry could be related to a nonlinear deterministic dynamic underlying the processes of neurogenesis. In 
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addition, the complexity of the distribution of nerve fibers likely extends through different scales since there are 
different sizes and orders of branching; therefore, it is likely that the fractal dimension is not unique but that we are 
dealing with a multifractal structure [8, 9]. Recently, many physical quantities that do not obey conventional scaling 
laws have been considered. Broad probability distributions are characteristic of such observables. In all cases, the 
moments of the distributions cannot be characterized by a single exponent. An infinity hierarchy of exponents is 
required. This phenomenon was described for the first time by B. B. Mandelbrot in the context of fully developed 
turbulence [10]; today, it is known by the neologism multifractality.  

The fractal dimension is the basic notion for describing structures with a scaling symmetry. Scaling symmetry means 
self-similarity of the considered object on varying scales of magnification. Therefore, a fractal dimension is an index for 
characterizing fractal patterns by quantifying their complexity as a ratio of the change in detail to the change in scale 
[11]. Briefly, three types of fractal dimension can be defined, depending on the methodology used for their estimation 
and the aspect of fractality on which they emphasize:  

 The fractal dimension by box counting (DB), often identified with the Hausdorff dimension, is the absolute value 
of the slope of the regression line represented in a log-log plot between the size of the box (scale) and the 
number of boxes occupied by pixels of the scanned structure. According to multifractal terminology [12], DB is 
equivalent to D0, where D0 is the fractal dimension for the moment Q = 0, also called the capacity dimension. 

 The Information dimension, D1, considers how the average information needed to identify an occupied box 
scales with box size, where p is the probability of finding a point of the fractal in the i-th cube of size ε;  

𝐷1 =  lim
𝜀→0

−〈log 𝑝𝜀〉

log 1
𝜀⁄

 

 The correlation dimension, D2, is a fractal dimension [13-16] and represents the probability that two points in 
the phase space are separated by Euclidean distance less than or equal to r [17]. The correlation dimension 
represents a characteristic of the attractor's geometry. It is related to the mode of distribution of its points in 
the space so that the more complex and folded the orbits of the attractor are, the greater will D2. In general, all 
these dimensions are different for one fractal object. Only in the case of the well-known simple fractals, 
monofractals, a single dimension suffices, and D0 = D1 = D2. Nevertheless, a "unique fingerprint" of a multifractal 
object requires the introduction of an infinite hierarchy of fractal dimensions [18-21]. Monofractal signals are 
homogeneous because they have the same scaling properties throughout the entire signal. In contrast, 
multifractals are structures that have multiple scaling rules instead of a single global scale [9, 11]. Monofractals 
can be indexed by a global Hölder exponent [22]; this is an exponent that shows how irregular the function is 
[23]. At the same time, multifractal signals can be decomposed into many subsets characterized by different 
local Hölder exponents, which quantify local and singular behavior and are related to the local scaling of the 
temporal (or spatial) series. Thus, multifractal signals require many exponents to characterize their scaling 
properties completely [24].  

The complexity of the distribution of cholinergic innervation of the albuginea suggests that its structural pattern may 
exhibit multiple scaling rules rather than a single global scale. That is, the study of nerve fibers could be approached 
through multifractal analysis. Therefore, in the present work, the cholinergic fiber plexuses of the rat testicular 
albuginea, visualized by a histochemical technique for the detection of acetylcholinesterases, will be analyzed for the 
possible detection of their multifractal structure, calculating several types of multifractal spectra.  

Models of realizations of point processes (Poisson type and others) associated with Voronoi-Delaunay tessellations have 
been applied to simulate different biological structures and their possible functional correlates, such as cellular 
interactions [25] distribution of renal glomeruli in normal and pathological mice [26] structure and distribution of 
pulmonary acini [27], nerve cell patterning [28], etc., in the present study the results will be compared with the 
multifractal spectra of plexuses models consisting of the elaboration of interconnected line lattices according to various 
realizations of randomly distributed points in a two-dimensional space [25]. 

2 Material and methods 

Five male Wistar rats, weighing an average of 250 g, were killed by carbon dioxide inhalation. The rats were bred and 
manipulated following the bioethical standards of international organizations (WMA Statement on Animal Use in 
Biomedical Research), European Union guidelines, and Spanish State and Local regulations for the use of animals in 
research, and approved by the Ethical and Animal Studies Committee of the Autonomous University of Madrid. After 
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euthanizing the animals, a longitudinal incision was made in both scrotal pouchs, and the testes and epididymis were 
removed, sectioning at the level of the lower third of the spermatic cord. The testis was freed from the paratesticular 
structures, and the subepididymal adipose tissue pads were removed; then, a longitudinal incision (2-3 mm in length) 
was made over the entire anterior border of the testicle from the upper to the lower pole. Next, the testicular 
parenchyma was carefully extracted, avoiding possible lesions of the testicular artery and the tunica vasculosa. Four 
additional incisions were made obliquely to the tissue's long axis (two in the upper pole and two in the lower pole) to 
facilitate the complete extension of the albuginea in one plane. The albuginea, thus isolated, was washed with cold 
isotonic serum. The albuginea was then spread on a flat silicon surface where it was fixed, constantly moistening in 
isotonic saline. Once the albuginea was obtained, a histochemical technique was used to visualize the cholinergic fibers 
in toto preparations (whole mount technique), as other authors [29, 30] have done to study the innervation of the blood 
vessels. In the present study, the Karnovsky-Roots technique was used; briefly: the tissue was incubated for 40-60 
minutes at room temperature in the Karnovsky-Roots medium that uses acetyl-thiocholine iodide as substrate [31-36], 
modified by EI-Badawi [37]. The incubation process is monitored under the microscope, stopping when the nerve 
plexuses' satisfactory staining is observed (approximately 2 hours). The extended albuginea is then mounted on a slide. 
The preparation is treated with 1% osmium tetroxide. It is washed in distilled water in five changes of 3 minutes each. 
The non-specific activity of cholinesterases was inhibited by adding iso-OMPA, 4 mM, to the medium [38, 39]. After 
incubation, the tissue was washed in phosphate-buffered saline at pH 7.2, dehydrated in ethanol, and mounted in a 
synthetic resin (Depex, Serva, Heidelberg, Germany). The albuginea specimens mounted on slides were examined using 
an Olympus microscope fitted with a motorized stage controlled by Cast-Grid's stereological software (Stereology 
Software Package, Silkeborg, Denmark); this program monitors the XY displacement of the microscope stage. At low 
magnification (x4), the total area covered by the albuginea was selected, and using the software's sampling system 
(meander sampling), an average of 10 fields was chosen with a uniform random distribution throughout the entire 
tissue extension. In each selected field, a total of 10 images were acquired at a magnification of x4 (at that magnification, 
512 pixels correspond to 262 µm); each specimen collection of 10 images was stored in jpeg format and processed for 
its binarization with Image J software (version 1.48), developed at the US National Institutes of Health and available on 
the Internet at https://imagej.nih.gov/ij/index.html [40]. The software for the estimation of multifractal parameters 
included in the FracLac plugging from Image J software (version 1.48) was applied in all of the binarized images from 
each case studied. FracLac generates a mass distribution for a binarized image; from this, a spectrum of values for the 
generalized dimension (DQ) is calculated. DQ addresses how mass varies with an image's ε (resolution or box size). The 
multifractal analysis applies a distorting factor to datasets extracted from patterns to compare how the data behave at 
each distortion. This is done using graphs known as multifractal spectra, analogous to viewing the dataset through 
a"distorting lens". One practical multifractal spectrum is the graph of DQ vs Q, where DQ is the generalized dimension 
for a dataset, and Q is an arbitrary set of exponents. The expression generalized dimension thus refers to a set of 
dimensions for a dataset. The general pattern of the graph of DQ vs Q can be used to assess the scaling in a pattern. The 
graph generally decreases and is sigmoidal around Q = 0, where D0 ≥ D1 ≥ D2. The generalized dimension also gives 
important specific information. D0 is equal to the capacity dimension (box counting dimension). D1 is equal to the 
information dimension, and D2 is equal to the correlation dimension. Multifractals have multiple dimensions in the DQ 
versus Q spectra, but monofractals stay relatively flat in that area.  

Another useful multifractal spectrum is the f(α) graph over a range of diverging exponents α.  

𝛼𝑖 =  
log

𝑚[𝑖,𝜀]

𝑀𝜀

log 𝜀−1
 

Where: 
i = index for each box over the set for a scale ε 
m[i,ε] = number of pixels on the box i at scale ε 
Mε = total pixels in all boxes for the scale ε 

𝑓(𝛼)  =  𝛼 × 𝑄 − (𝐷𝑄 × (𝑄 − 1)) 

Where: 
Q = the arbitrary set of exponents used for calculating spectra 
DQ = generalized dimension for the data set 

This graph generally rises to a maximum approximating the fractal dimension at Q=0 and then falls. Like DQ versus Q 
spectra, f(α) shows typical patterns for comparing non-, mono-, and multifractal patterns. In particular, non- and mono-
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fractals converge on specific values for this spectrum, whereas the spectrum from multifractal patterns typically forms 
humps over a broader area. FracLac delivers the multifractal measures and graphs the typical multifractal spectra of 
f(α) versus α and DQ versus Q.  

In summary, on the binarized images, the following estimates were performed: 

 Multifractal spectrum f(α) versus α. 
 In the graph f(α) vs α the divergence was estimated. This is a measure of multifractality, also called Green 

divergence (ρ) [7]. Divergence is based on the minimum and maximum values for the f(α) versus α for the two 
sets of values around each side of Q = 0. Mathematically, it is the ratio of the areas defined by the spectra within 
those two spaces multiplied by 100, calculated in the space defined by the Qset used in determining the 
multifractal spectra; the greater the value of ρ, the greater multifractality the data set will possess. 

𝜌 =  
(𝛼0 − 𝛼𝑚𝑖𝑛) × (𝑓(𝛼0) − 𝑓(𝛼𝑚𝑖𝑛))

(𝛼𝑚𝑎𝑥 − 𝛼0) × (𝑓(𝛼0) − 𝑓(𝛼𝑚𝑎𝑥))
× 100 

Where α0 is the alpha exponent at Q = 0, αmin is the alpha exponent at minimum value of Q, and αmax is the alpha at 
maximum value of Q, in the range of values of Q used.  

 Generalized dimension DQ versus Q. 
 From the DQ vs Q graph, the dimensions D0 (capacity dimension), D1 (information dimension), and D2 

(correlation dimension) were extracted. 

Each value of Q is an exponent used in calculating the multifractal spectra. The maximum, minimum, and increment 
between Qs are arbitrary values the user sets; the range employed was from -10 to 10, incremented by 0.1. 

All these measurements were carried out on each case's images, obtaining at the end graphs in which the mean of each 
estimator ± CI (95%) was expressed. 

In order to compare the multifractal spectra of the real data, a statistical software package in R (spatstat) was employed 
[41, 42] for the elaboration of some models of the nerve plexuses. The protocol was as follows: 

-Five simulations of point processes were carried out:  

 Rpoispp: Generates a random point pattern using the Poisson process and includes CSR (complete spatial 
randomness). 

 Rssi: This algorithm generates a realization of the Simple Sequential Inhibition point process. Starting with an 
empty window, the algorithm adds points one by one. Each new point is generated uniformly in the window 
and independently of preceding points. If the new point lies closer than r units from an existing point, it is 
rejected, generating another random point. 

 Runifpoint: This function generates n independent random points, uniformly distributed.  
 Rmatclust: This algorithm generates a realization of Matern's cluster process. The process is constructed by 

first generating a Poisson point process of "parent" points with intensity κ. Then, each parent point is replaced 
by a random cluster of points, the number of points in each cluster being random with a Poisson distribution, 
and the points being placed independently and uniformly inside a disc of radius r centered on the parent point. 

 Rsyst: Generates a “systematic random” pattern of points in a window, consisting of a grid of equally-spaced 
points with a random common displacement. 

For each simulation, a set of pairs of coordinates (points) was obtained; the average number of coordinate pairs was 26 
per image, and the size of each image was 742 x 1024 pixels (379 x 523 µm). 

From each set of coordinates, in each simulation, two different types of network of connections were built using 
segments following the Delaunay tessellation method: a binary connection matrix and the tessellation matrix [43]. The 
networks generated using the points processes above indicated are expressed in Table 1, and some examples of the 
realizations of points and the different types of generated networks (Figures 1,2) are displayed.  
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Table 1 Networks generated using diverse point realizations  

Point realizations1 Network type 12 Network type 23 

Rpoispp poiss1 poiss2 

Rssi ssi1 ssi2 

Runifpoint unif1 unif2 

Rmatclust matclust1 matclust2 

Rsyst syst1 syst2 
1Simulations of point processes used as nodes to interconnect linear segments. 2Networks generated by segments produced by a binary matrix. 

3Networks generated by segments produced by a tessellation matrix. 

 

 

Figure 1 a, b: Images showing random point patterns generated by a Poisson process (Rpoispp). c: Image of a network 
of segments obtained from Rpoispp points using a binary matrix (poiss1). d: Image of a network of segments obtained 
from Rpoispp points using a tessellation matrix (poiss 2). e,f: Images showing random point patterns generated by a 
realization of the simple sequential inhibition point process (Rssi). g: Image of a network of segments obtained from 

Rssi points using a binary matrix (ssi 1), h: Image of a network of segments obtained from Rssi points using a 
tessellation matrix (ssi 2). i, j: Images showing point patterns generated by independent random points, uniformly 

distributed (Runifpoint). k: Image of a network of segments obtained from Runifpoint using a binary matrix (unif 1). l: 
Image of a network of segments obtained from Runifpoint using a tessellation matrix (unif 2). m,n: Images showing 
random point patterns generated by a realization of Matern's cluster process (Rmatclust). o: Image of a network of 
segments obtained from Rmatclust using a binary matrix (matclust 1). p: Image of a network of segments obtained 

from Rmatclust using a tessellation matrix (matclust 2). The scale bars represent 580 µm 

Five different realizations were carried out for each point process so that five type 1 networks and another five type 2 
networks have been obtained for each point process. Next, the mean of the multifractal parameters for each realization 
± SEM was obtained to compare with the real data. Comparisons between the means from ρ, and D0, D1, and D2 for real 
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and simulated network groups were performed by ANOVA (p < 0.05). The multifractal spectra f(α) vs α and DQ vs Q 
were represented graphically using Prism 7.00 (Graph-Pad Software). 

 

Figure 2 a, b: Images showing a systematic random pattern of points (Rsyst). c: Image of a network of segments 
obtained from Rsyst points using a binary matrix (syst 1). d: Image of a network of segments obtained from Rsyst 

points using a tessellation matrix (syst 2). The scale bars represent 580 µm 

3 Results 

 

Figure 3 a Whole mount of the testicular albuginea of the rat stained to show the plexuses of cholinergic innervation. 
b: The image from (a) was processed to segment the stained nerve fibers; subsequently, the image was binarized and 

skeletonized. The scale bars represent 580 µm 
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The tunica adventitia of the testicular artery that runs across the albuginea from the superior to the inferior testicular 
poles contained a rich plexus of acetylcholinesterase-positive (AchE) nerve fibers. Collateral branches of this plexus are 
observed developing a broad network with fibers ending beneath the rete testis epithelium (Figure 3 a,b).  

3.1 Multifractal spectra f(α) vs α 

The multifractal spectrum of the AchE positive plexuses of the testicular albuginea shows a humped morphology with 
the branch of the graph of α values for Q ≤ 0 longer than that of the corresponding values for the range of values for Q ≥ 
0, the maximum value of α (Q = 0) is 1.45 (Figures 4, 5). When the spectrum of the real data is compared with the spectra 
obtained for the different networks generated by segments produced by a binary matrix, it is observed that the curve 
of the models moves to the left of the graph; this displacement was significant for the branch of α values in the range of 
Q ≥ 0 (Figures 4, 5). 

 

Figure 4 Multifractal spectrum f(α) of the cholinergic fiber plexus of the rat testicular albuginea (real) in comparison 
with the network models: poiss 1 (a), ss1 (b), and unif 1 (c). The values of the diverging exponent α are expressed on 
the ordinate axis, and the values of f(α) are expressed on the abscissa axis. The branch of the curves for the range of Q 
≥ 0 is indicated in green, and the branch for Q ≤ 0 in red. The dotted lines for each curve express the 95% confidence 

intervals (CI) 
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Figure 5 Multifractal spectrum f(α) of the cholinergic fiber plexus of the rat testicular albuginea (real) in comparison 
with the network models: matclust 1 (a) and syst 1 (b). The values of the diverging exponent α are expressed on the 

ordinate axis, and the values of f(α) are expressed on the abscissa axis. The branch of the curves for the range of Q ≥ 0 
is indicated in green and the branch for Q ≤ 0 in red. The dotted lines for each curve express the 95% confidence 

intervals (CI) 

The model that shows the least displacement is matclust1 (Figure 5a). When the alpha spectrum for the real values is 
compared with that of the networks generated by segments produced by a tessellation matrix, the overlapping of the 
branch of real α values for Q ≥ 0 with the simulated ones is visualized in all cases (Figures 6,7).  
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Figure 6 Multifractal spectrum f(α) of the cholinergic fiber plexus of the rat testicular albuginea (real) in comparison 
with the network models: poiss 2 (a), ss2 (b), and unif 2 (c). The values of the diverging exponent α are expressed on 
the ordinate axis, and the values of f(α) are expressed on the abscissa axis. The branch of the curves for the range of Q 
≥ 0 is indicated in green, and the branch for Q ≤ 0 in red. The dotted lines for each curve express the 95% confidence 

intervals (CI) 
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Figure 7 Multifractal spectrum f(α) of the cholinergic fiber plexus of the rat testicular albuginea (real) in comparison 
with the network models: matclust 2 (a) and syst 2 (b). The values of the diverging exponent α are expressed on the 

ordinate axis, and the values of f(α) are expressed on the abscissa axis. The branch of the curves for the range of Q ≥ 0 
is indicated in green, and the branch for Q ≤ 0 in red. The dotted lines for each curve express the 95% confidence 

intervals (CI) 

The divergence estimate (ρ) shows that when ρ of the real data is compared with the same measure of the models built 
from a binary matrix, the real ρ is significantly higher in all cases (Figure 8a). However, ρ does not show significant 
differences between the real and simulated data when generated from a tessellation matrix, except for the unif 2 
network, which shows significantly less divergence than the real data (Figure 8b). 

 

Figure 8 a: Scatter dots of the divergence (ρ) of the real data compared to the network models obtained from a binary 
matrix. b: Scatter dots of the divergence (ρ) of the real data compared to the network models obtained from a 

tessellation matrix. In both images, the dots indicate the individual cases of each group, the horizontal lines represent 
the mean, and the error bars indicate the SEM. Numbers placed above each error bar show significance: Error bars 
affected by different numbers indicate significant differences of simulated data compared to real data. Error bars 

affected by equal numbers indicate non-significant differences between those groups 
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3.2 Generalized dimension DQ vs Q  

When the curve of the DQ vs Q of the real data is compared with the curves of the models generated from a binary matrix, 
the branch of the curve of the real data is significantly below the same branch of the simulated data for the range of 
values Q ≤ 0 (Figure 9 a-c; and Figure 10 a,b). However, the branch of the DQ vs Q curve of the real data for the range of 
values Q ≥ 0 approximates the curves of the simulated data, the differences being significant only with the simulations 
unif1 and syst1 (Figure 9c and Figure 10b). 

 

Figure 9 Graphs of the generalized dimension D(Q) as a function of Q. Q values are represented on the X axis, and 
D(Q) is on the Y axis. a: D(Q) obtained for the cholinergic innervation of the testicular albuginea of the rat (real data) is 
compared with D(Q) for the poiss 1 network; b: D(Q) of the real data is compared to D(Q) for the ssi1 network; c: D(Q) 
of the real data is compared to D(Q) for the unif1 network. All these networks have been generated by using a binary 

matrix. The insets of each graph show the section of the curve between Q = 0 and Q = 2 to show the dimension of 
capacity Q0 (blue), information Q1 (green), and correlation Q2 (red). The dotted lines for each curve express the 95% 

confidence intervals (CI) 

 



Open Access Research Journal of Life Sciences, 2023, 06(02), 053–071 

64 

 

Figure 10 Graphs of the generalized dimension D(Q) as a function of Q. Q values are represented on the X axis, and 
D(Q) is on the Y axis. a: D(Q) obtained for the cholinergic innervation of the testicular albuginea of the rat (real data) is 
compared with D(Q) for the matclust1 network; b: D(Q) of the real data is compared to D(Q) for the syst 1 network. All 
these networks have been generated by using a binary matrix. The insets of each graph show the section of the curve 

between Q = 0 and Q = 2 to show the dimension of capacity Q0 (blue), information Q1 (green), and correlation Q2 (red). 
The dotted lines for each curve express the 95% confidence intervals (CI) 

When the DQ vs Q curve for the real data is compared to the simulation curves obtained from a tessellation matrix, the 
branch of the real data curve for the range of Q ≤ 0 is significantly below the same branch of the curve in all generated 
simulations. However, the branch of the curve of the real data in the range Q ≥ 0 does not differ significantly from all the 
simulations produced (Figure 11 a-c; and Figure 12 a,b).  
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Figure 11 Graphs of the generalized dimension D(Q) as a function of Q. Q values are represented on the X axis, and 
D(Q) is on the Y axis. a: D(Q) obtained for the cholinergic innervation of the testicular albuginea of the rat (real data) is 

compared with D(Q) for the poiss 2 network; b: D(Q) of the real data is compared to D(Q) for the ssi 2 network; c: 
D(Q) of the real data is compared to D(Q) for the unif 2 network. All these networks have been generated by using a 

tessellation matrix. The insets of each graph show the section of the curve between Q = 0 and Q = 2 to show the 
dimension of capacity Q0 (blue), information Q1 (green), and correlation Q2 (red). The dotted lines for each curve 

express the 95% confidence intervals (CI) 
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Figure 12 Graphs of the generalized dimension D(Q) as a function of Q. Q values are represented on the X axis, and 
D(Q) is on the Y axis. a: D(Q) obtained for the cholinergic innervation of the testicular albuginea of the rat (real data) is 

compared with D(Q) for the matclust 2 network; b: D(Q) of the real data is compared to D(Q) for the syst 2 network. 
All these networks have been generated by using a tessellation matrix. The insets of each graph show the section of 

the curve between Q = 0 and Q = 2 to show the dimension of capacity Q0 (blue), information Q1 (green), and 
correlation Q2 (red). The dotted lines for each curve express the 95% confidence intervals (CI) 

For the real data, no significant differences have been observed between the capacity dimension (D0 = 1.449  0.055), 
the information dimension (D1 = 1.446  0.059), and the correlation dimension (D2 = 1.445  0.060). When D0 and D1 of 
the real data are compared with the same dimensions of the simulated data, it is observed that in the case of the 
simulations generated from a binary matrix, D0 and D1 of the real data are significantly smaller than in the case of the 
simulations (Figure 13 a,b), while when real D0 and D1 are compared with the corresponding dimensions of the 
simulations generated by a tessellation matrix, there are no significant differences (Figure 13 c,d).  
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Figure 13 a Scatter dots of the real data's capacity dimension (Q0) compared to the network models obtained from a 
binary matrix. b: Scatter dots of the information dimension (Q1) of the real data compared to the network models 
obtained from a binary matrix. c: Scatter dots of the real data's capacity dimension (Q0) compared to the network 

models obtained from a tessellation matrix. d: Scatter dots of the information dimension (Q1) of the real data 
compared to the network models obtained from a tessellation matrix. In all the images, the dots indicate the individual 

cases of each group, the horizontal lines represent the mean, and the error bars indicate the SEM. Numbers placed 
above each error bar show significance: Error bars affected by different numbers indicate significant differences of 

simulated data compared to real data. Error bars affected by equal numbers indicate non-significant differences 
between those groups 

The results are similar for the case of D2, except that D2 of the real data does not show significant differences with D2 of 
the simulated network poiss1 (Figure 14). 
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Figure 14 a Scatter dots of the correlation dimension (Q2) of the real data compared to the network models obtained 
from a binary matrix. b: Scatter dots of the correlation dimension (Q2) of the real data compared to the network 

models obtained from a tessellation matrix. In both images, the dots indicate the individual cases of each group, the 
horizontal lines represent the mean, and the error bars indicate the SEM. Numbers placed above each error bar show 
significance: Error bars affected by different numbers indicate significant differences of simulated data compared to 

real data. Error bars affected by equal numbers indicate non-significant differences between those groups 

4 Discussion 

Mathematical modeling of real complex networks aims to characterize their architecture and decipher their underlying 
principles. Self-repeating patterns and multifractality exist in many real-world complex systems such as the brain, 
genetics, geoscience, and social networks [44], in the same way as for other biological structures and systems [7, 45-
47], the cholinergic nerve plexuses of the testicular albuginea of the rat show a multifractal behavior, as evidenced by 
the curve of the f(α) spectrum that adopts a humped morphology with the branch corresponding to the range of values 
Q ≤ 0 (showing the weak singularities) more open than the branch corresponding to the strong singularities (Q ≥ 0) [7]. 
The spectrum f(α) of the real data is similar in morphology to those obtained in the various simulation models used; 
however, there are apparent differences depending on the type of model used: in all the models obtained from a binary 
connection matrix, there is no overlapping of the simulated spectra with the real one and the divergence of the real data, 
being significantly higher than the ρ of the simulations, suggests that the multifractality of the real data is greater than 
that of the simulated networks. However, in the comparison of the real f(α) with the f(α) of the models obtained from a 
tessellation matrix, a more remarkable similarity of the multifractal scale is observed since the ρ of the real data does 
not differ significantly from the ρ of the simulated data, this similarity is particularly remarkable when considering the 
branch of the curve f(α) that manifests strong singularities (Q ≥ 0) [7]. In general, the f(α) curve of the models obtained 
from tessellation matrices is more asymmetric than the f(α) of the real data, manifesting this asymmetry at the expense 
of the branch of the curve that indicates weak singularities (Q ≤ 0). As in other studies carried out on very diverse objects 
[7, 48], the curvature and symmetry of the f(α) spectra provide information on the heterogeneity. As reported in the 
literature [49], the generalized dimension DQ is defined for all real Q and is a monotone decreasing function of Q. There 
are lower and upper limiting dimensions D-∞ and D+∞ , respectively, which are related to the regions of the set, in which 
the measure is "most dilute" and "most dense" respectively. The graphs that show the evolution of the generalized 
fractal dimension (DQ) indicate that the DQ values of the real data are above the DQ values for the simulated data, 
especially in the range of weak singularities (Q ≥ 0). For values in the range of strong singularities (Q ≤ 0), overlapping 
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the real DQ with the simulated ones is more relevant for the models generated by a tessellation matrix. All of the above 
agrees with what was observed for the multifractal spectrum f(). The dimensions of capacity (D0), information (D1), 
and correlation (D2) that are considered particular cases of the continuous spectrum of generalized dimensions (DQ) 
[50] have similar values for the real data and also coincide with the corresponding ones of the simulations generated 
by a tessellation matrix, this corroborates what is suggested by the multifractal spectra, in the sense that the network 
models generated by this type of matrices have a multifractal scaling more similar to that of the real data than the models 
originated by a binary matrix. In multifractals, it is described that D0, D1, and D2 differ from each other, with decreasing 
values from D0 to D2 [49, 50], however in the present study, although this order is observed from highest to lowest 
between D0 and D2, the differences are not significant, in this sense, and although the scaling pattern for both f() and 
DQ seems to be multifractal, the absence of significant differences between D0, D1, and D2 could suggest that the scaling 
of the real data would be monofractal [49]. Voronoi tessellations models [25] have been used to simulate various 
biological structures such as pulmonary acini [27], nerve cell patterns [28], distribution of normal and pathological 
renal glomeruli [26], in the present work it is observed that the multifractal structure of the cholinergic nerve plexuses 
of the testicular albuginea of the rat is similar to that observed in network models built from a tessellation matrix, 
regardless of the type of distribution of points used to build the model. 

5 Conclusion 

In summary, we can conclude that: a) The cholinergic nerve plexuses of the testicular albuginea of the rat show a 
multifractal behavior; b) The multifractality of the real data is greater than that of the simulated networks; c) However, 
Voronoi tessellations models show a greater similarity of the multifractal scale with the real data in comparison with 
those generated by a binary matrix. 
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