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Abstract 

Pharmacological and therapeutic properties of phytocannabinoids present in Cannabis sativa L. (Linnaeus) are of 
increasing interest worldwide. In the present study, a group of goldfish (Carassius auratus) were used to test the 
antioxidant effects of cannabidiol (CBD) in the brain of in vivo chlorpyrifos (CPF)-exposed fish. CPF, an organophosphate 
insecticide, is known for its pro-oxidant effects and irreversible inhibition on cholinesterase (ChE) enzymes. The 
experimental fish (n=22) (22.86 ± 1.15 g body weight, 8.33 ± 0.16 cm total length) were randomly distributed in 4 
different treatments: A. Control fish (n=6), B. CPF-exposed fish (n=5), C. CPF-exposed + IP injected vehicle (n=5), and D. 
CPF-exposed + IP-injected CBD (5 mg/Kg) (n=6).  Fish were humanely sacrificed after 96 h of the experimental time and 
brains were processed to measure F2-isoprostanes (F2-IsoPs) as a biomarker of oxidative stress response (ELISA 
OxiSelect™ 8-iso-PGF2). ChE activity was measured in fish blood plasma as a biomarker of CPF exposure. Mean values 
of F2-IsoPs and ChE were used as statistics for comparison among treatments. Neither of the fish treatments showed 
signs of acute poisoning after the CPF exposure. However, plasma ChE activity showed inhibition effects in the 
corresponding groups after the 96-h exposure to CPF. The lowest F2-IsoPs value (mean ± SE, pg/ml) was found in the 
CPF-exposed + CBD-injected fish (281 ± 45) followed by the controls (396 ± 90). The two highest values of F2-
isoprostanes were present in the CPF-exposed (728 ± 236) and the CPF-exposed + vehicle-injected fish (566 ± 90) 
(ANOVA, 95%, p <0.05; Fisher least significant difference). Three types of functional groups within the CBD structure 
are considered a key factor to explain the prevention of oxidative stress: limonene, phenol and aliphatic group. These 
groups, particularly the phenol, transfer electrons and hydrogen atoms to avoid the lipid peroxidation in the tissues 
affected by pro-oxidant agents. Results in the present work showed that CBD protected of the oxidative stress caused 
by CPF in the brain of goldfish. This neuroprotective action of CBD against oxidative stress promotes further research 
to explore pharmacological and therapeutic applications. 
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1 Introduction 

Oxidative stress is a disturbance in the balance between reactive oxygen species (ROS) formation and cellular 
antioxidant capacity [1, 2] Overproduction of free radicals can cause oxidative damage to biomolecules (lipids, proteins, 
DNA) that leads to various pathological conditions, such as neurodegenerative diseases. The brain is particularly 
vulnerable to the effects of ROS because of its high oxygen demand, its high concentration of polyunsaturated fatty acids 
prone to peroxidation and its rather low endogenous antioxidant defense and DNA repair systems. Previous studies 
have demonstrated that oxidative stress plays a central role in the pathophysiology of neurodegenerative conditions 
such as Alzheimer's, Parkinson's, Huntington's and amyotrophic lateral sclerosis; therefore, antioxidant therapy has 
been suggested for the prevention and adjuvant treatment of these conditions [3–8]. 
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Cannabidiol (CBD; IUPAC name: 2-[(1R,6R)- 3-methyl-6-prop-1-en-2-ylcyclohex-2-en-1-yl]-5- pentylbenzene-1,3-diol, 
C21H30O2) (Figure 1), is the major non-psychoactive cannabinoid component among 150+ phytocannabinoids derived 
from Cannabis sativa L. [9, 10]. It is a 21-carbon terpenophenolic compound which is formed following decarboxylation 
from a cannabidiolic acid precursor [10, 11]. 

 

Figure 1 Chemical structure of cannabidiol (CBD) (ChemSpider TM) 

Previous reports showed that CBD may have therapeutic benefits. In fact, this compound has proven to have 
antinflammatory [12–16], neuroprotective [17–29], anxiolytic [20, 30], analgesic [31], antidepressant [32], 
hepatoprotective [33] and immunomodulator effects [34-36]. In the following years, CBD has been studied to determine 
its antioxidant efficacy in different quantum chemical and mechanical methods [11], in vitro models of 
neurodegenerative diseases [22, 37-42], and a few in vivo models in CNS with promising results [33, 43-45]. 

However, to the best of our knowledge, the neuroprotective antioxidant effect of CBD against chlorpyrifos effects in the 
central nervous system (CNS), using F2-isoprostanes (F2-IsoPs) as biomarker, was not yet investigated. Hence, we have 
conducted the present study to investigate the potential neuroprotective effect of CBD acting as an antioxidant molecule 
in goldfish (Carassius auratus) exposed to chlorpyrifos as a pro-oxidant agent.  

2 Material and methods 

2.1 Animals 

Sexually mature female and male goldfish (Carassius auratus, n=22, mean body weight 22.86 ± 1.15 g and mean body 
length 8.33 ± 0.16 cm) were obtained from a commercial farm in Bogotá, Colombia. Fish were acclimated for three weeks 
in the Aquatic Toxicology Laboratory of Universidad Nacional de Colombia in 80-L glass tanks with dechlorinated tap 
water (total hardness 34.2 mg CaCO L-1, pH 6.5-7.0, and constant aeration). Water temperature was maintained at 20.4 
± 1.2 C. Fish were exposed to a natural 12:12 h light/dark photoperiod and the tank water was partially changed every 
3 days. During acclimation, the fish were fed ad libitum with commercial goldfish food (Tropical Fish Pellets Tetra®). 
The fish were handled according to the guidelines of the Colombian Law for Animal Health Protection and Instructions 
for Animal Experimentation for Scientific Purposes [Ethics approval No. 09-2018]. 

2.2 Experimental treatments 

Goldfish were randomly distributed into four experimental treatments: A. Control fish (n=6), B. CPF-exposed fish (n=5), 
C. CPF-exposed + IP injected vehicle (n=5), and D. CPF-exposed + IP-injected CBD (5 mg/Kg) (n=6). Controls were not 
exposed to CPF, vehicle solution or CBD and underwent anesthesia and handling as experimented by Treatments B, C 
and D. Treatment B were exposed to CPF. Treatment C were exposed to CPF and received i.p. injection with the vehicle 
solution. Treatment D were exposed to CPF and received i.p. injection with CBD at a dose of 5 mg/Kg. 
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2.3 Chemicals and reagents 

Cannabidiol crystals were kindly supplied by Endoca TM (Hoofddorp, Netherlands) as certified analytical grade (99.9% 
purity). CBD injection was given in the corresponding fish before chlorpyrifos exposure [33, 44]. CBD crystals were 
dissolved in a mixture (v/v/v) of 7:2:1 polyethylene glycol 400 (PEG 400) / 99.9% ethanol / phosphate buffered saline 
(PBS) [46, 47]. Group C received vehicle solution as a control of the CBD treatment.   

2.4 Intraperitoneal (i.p.) injections 

Fish received a single i.p. injection according to the modified protocol of Kinkel and col. [48]. Prior to injection, subjects 
were anesthetized gradually decreasing core temperature from 20C to 4C. Researchers chose this technique to avoid 
any influence or interference of chemical anesthesia in the results. 

2.5 Chlorpyrifos exposure 

CPF (Lorsban™ 4 EC) was purchased from Dow Agrosciences (Bogotá, Colombia). Exposure concentration of CPF in 
experimental treatments B, C and D was 3.5 g L-1 for 96 hours. This concentration was determined as sublethal based 
on preliminary tests. This value corresponds to 1/44 (2.29%) of the CPF median lethal concentration (LC50) for this 
species, reported as 153 g/L [49]. Fish were not fed during the experimental phase.                                             

2.6 Plasma cholinesterase activity assay 

Acetylcholinesterase (AChE) was quantified using a modification of Ellman’s method [50]. This method is based on the 
degradation rate of acetylthiocholine by the AChE activity, into acetate and thiocholine. Thiocholine complexes with 
5,5’-dithiobis-2-nitrobenzoic acid (DTNB, Ellman's reagent) yielding a product that is monitored by measuring its 
absorbance at 405 nm. Briefly, 1.3 mL of phosphate buffer (pH 8.0, 0.1 M) were mixed with 50 μl of plasma and 50 μl 
solution of DTNB, followed by the addition of 10 μl of the enzyme substrate, acetylthiocholine. The change in absorbance 
was recorded for 2 minutes using a Stat Fax® 3300 (Awareness Technology, Inc.TM). The change in absorbance was 
converted into enzyme activity by utilizing a derived formula. AChE activity was expressed as nanomols (nM) of complex 
formed per min per mL of plasma. All measurements were made in duplicate at 25C. 

2.7 Whole brain homogenization 

After the experimental time, fish were anesthetized by lowering water temperature to 4oC and then euthanized by 
cervical dislocation. The brain of each specimen was extracted and weighed on an analytical balance (Ohaus® 
Adventurer®). Whole brain was homogenized in Phosphate Buffered Saline (1x PBS) at pH 7.4 using 1 mg of brain tissue 
and 5 L buffer in a Potter-Elvehjem tissue homogenizer. Serine and cysteine protease inhibitor phenylmethylsulfonyl 
fluoride (1x PMSF) was added. After centrifugation at 12500 rpm (~ 17500 x g) for 30 min at 4°C, the supernatant was 
kept and used for successive isoprostane analysis [51]. 

2.8 8‐iso-Prostaglandin F2α (8-iso-PGF2α) quantification: ELISA assay 

Lipid peroxidation was determined by measuring the levels of F2-isoprostane in the brain supernatants with a 
commercially available competitive enzyme immunoassay ELISA kit (OxiSelect™ 8-iso-Prostaglandin F2α ELISA Kit; Cell 
Biolabs, Inc., San Diego, California, USA). This isomer (also known as 8-isoprostane; 8-epi PGF2α; iPF2α.-III; 15-F2t-
isoprostane; or 15-F2t-IsoP) has been used as a reliable biomarker of F2-isoprostane levels. The concentration of 8-iso-
PGF2α is presented as pg/mL. The kit´s sensitivity is estimated in the range of 49 pg/mL to 200.000 pg/mL of 8-
isoprostane. Samples were assayed for free (unbound) and for total (free + esterified) 8-iso-PGF2α. Total 8-iso-PGF2α 
was measured after alkaline hydrolysis of tissue lysate. Briefly, 200 μL of supernatant were combined with 50 μL of 10N 
sodium hydroxide (NaOH) and incubated at 45°C for 2 hours. After incubation, 50 μL of 10N hydrochloric acid (HCl) 
were added and samples were centrifuged at 12,000 rpm (~ 16128 x g) for 5 min at room temperature. Finally, a 1:1 
sample dilution with neutralization solution (pH= 6 ~ 8) was performed if needed. All ELISA assays were performed in 
duplicate following manufacturers’ recommendations. The quantity of 8-iso-PGF2α was determined by comparing the 
absorbance at 450 nm in the samples with those of a standard curve. 

2.9 Statistical analysis 

All obtained data were tested for normality (Shapiro-Wilk test) and homogeneity of variances (Bartlett's test). The 
statistical analysis was performed by means of one-way analysis of variance (ANOVA), followed by a Fisher's Least 
Significant Difference (LSD) test in order to determine significant differences among the F2-isoprostanes values. A p 
value less than 0.05 was considered statistically significant. Results are expressed as mean ± standard error of the mean 
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(SEM).  All statistical analysis were performed by using the statistical software R 3.6.0 for Windows (R: A language and 
environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria).  

3 Results and discussion 

3.1 Experimental fish 

None of the fish of any of the experimental treatments showed apparent signs of distress or deleterious effects due to 
the CPF exposure, the I.P. injections or the handling during the procedures prior to the onset of the 96 hour-
experimental time. All the fish maintained normal behavior in the experimental tanks.  

3.2 Plasma acetylcholinesterase (AChE) activity  

Plasma AChE activity (nM min/mL plasma, mean ± SEM) in experimental groups was as follows; A (controls): 23879 ± 
4081, B (CPF-exposed): 10059 ± 1761, C (CPF-exposed + vehicle):  10956 ± 2293 and D (CPF-exposed + CBD): 11795 ± 
1051. There was a significant inhibition of AChE activity in all of the CPF-exposed groups that ranged from 50.8 % to 
57.9 % (p=0.0064; Figure 2).  

3.3 Brain 8-iso-PGF2α levels  

Brain 8-iso-PGF2α (pg/ml, mean ± SEM) had significant differences among experimental treatments. The highest value 
was shown by treatment C (CPF-exposed + vehicle) 728 ± 236, followed by B (CPF-exposed) 566 ± 91 and A (controls) 
396 ± 91. Treatment D (CPF-exposed + CBD injected fish) had the lowest F

2
-IsoPs of all the treatments, 281 ± 45, which 

was statistically significant different from the other two CPF-exposed groups (B and C). The fish exposed to CPF alone 
and CPF + vehicle had the highest levels of F

2
-IsoPs compared to the control group. Brain levels of F

2
-IsoPs were 

significantly reduced in the group treated with CBD compared to the experimental groups exposed to CPF but not 
treated with CBD (p=0.0271) (Figure 3).  F

2
-IsoPs values of the CBD treated-fish (Group D), which was exposed to CPF 

too, were even lower than those of controls (group A), not exposed to either the pro-oxidant CPF or CBD.  

 

Figure 2 Plasma acetylcholinesterase (AChE) activity measured in Carassius auratus acutely exposed to 3.5 g L-1 of 
chlorpyrifos. Assays were performed in duplicate. Data are presented as mean ± standard error of the mean SEM (n = 

5-6). Bars with different letters from each other are statistically significant different (p<0.05) 

Chlorpyrifos (CPF) is an organophosphate (OP) pesticide widely used in agriculture and known for its deleterious effects 
on the CNS [52]. Following OPs exposure, cholinergic neuronal excitotoxicity and dysfunction results from the acute and 
excessive stimulation of cholinergic receptors due to irreversible inhibition of acetylcholinesterase (AChE) [53, 54].  

Besides the main mechanism of OPs toxicity, oxidative stress is another effect caused by these insecticides. 
Overstimulation of cholinergic and glutamatergic nervous system is followed by intensified generation of reactive 
species and oxidative damage [55]. Researchers has found in in vivo and in vitro models that CPF can significantly 
decrease the activity and expression of antioxidant enzymes such superoxide dismutase (SOD), catalase (CAT) [56, 57], 
glutathione peroxidase (GPx) and glutathione s-transferase (GST) [58, 59] in different organs, as well as an increase in 
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lipid peroxidation reflected in higher levels of malondialdehyde (MDA) in the thiobarbituric acid reactive substances 
(TBARS) test [49, 56, 58, 59].  

 

Figure 3 Brain 8‐iso-Prostaglandin F2α levels quantified by ELISA test. Assays were performed in duplicate. Data are 
presented as mean ± SEM (n = 5-6 per experimental group). Bars labeled with different letters from each other are 

statistically significant different (p<0.05) 

In the present study, fish exposed to 3.5 g/L CPF showed no symptoms of poisoning or any changes in behavior during 
the experimental time. However, CPF was a potent inhibitor of AChE in goldfish plasma. In all the CPF-exposed 
treatments, AChE activity was significantly lower than in controls (50.8 to 57.9 % inhibition). Similar results had been 
reported by Yen and col. [60] who used zebrafish (Danio rerio) exposed to CPF. As for the baseline values found in the 
controls (23879 ± 700 nM tiocolina/min/mL), these are very similar to the ones reported by Chuiko and col. [61] for 
the Cyprinidae (18600 ± 700 nmol/min/mL), taxonomic group to which Carassius auratus belongs. 

Cholinesterase activity, particularly AChE, is a very sensitive biomarker that reflects the exposure to OPs at even 
sublethal concentrations. Results of AChE activity in CPF-exposed treatments (B, C and D) confirmed the exposure and 
the inhibitory catalytic effects caused by CPF despite the absence of symptoms. The main purpose of evaluating effects 
of CPF on AChE activity was to demonstrate that the insecticide was causing changes at the biochemical level of exposed 
fish, and then to investigate further correlation with brain F2-IsoPs and likely CBD protection on the oxidative stress 
caused by CPF.  

F2-IsoPs are very stable molecules present in all tissues and biological fluids. Measuring of F2-IsoPs has made more 
accurate the in vivo assessment of lipid peroxidation and oxidative stress [62]. Since 2005 the most reliable biomarker 
for evaluation of oxidative stress in humans and animals is the measurement of F2-IsoPs, and therefore considered a 
“gold standard”. The two approaches for this measurement are mass spectrophotometry and immunological-based 
methods. The latter are more accessible and are based on the ELISA technique [63].  Reports on the use of F2-IsoPs in 
fish species are not abundant in the literature.  Bulloch and col. [64] developed a methodology to determine F2-IsoPs in 
fish mucus using high performance liquid chromatography in tandem with mass spectrometry. Most of the reports on 
the use of F2-IsoPs in animals use urine to determine the level of oxidative stress [65]. In the present discussion, 
comparisons among the experimental treatments will serve for the purpose of determining the utility of F2-IsoPs as 
biomarker of oxidative stress, given the scarcity of reports in piscine species.  

The levels of F2-IsoPs (free 8-iso-PGF2) had significantly higher values in the brain tissue of the two CPF-exposed fish 
(treatments B and C) in the present investigation. These results complied with those reported by López-Granero and 
col. [66] in the brain of male Wistar rats exposed to CPF. In the present work, control fish had a lower (396 ± 91 pg/mL) 
concentration of F2-IsoPs in the brain homogenates as compared to those of the CPF-exposed fish (566 ± 91 pg/ml) and 
the CPF-vehicle exposed (728 ± 236 pg/ml). This represents a significant difference of 1.4-fold and 1.8-fold, respectively. 
The lowest F2-IsoPs level was found in the brain of CPF-exposed + CBD-injected fish (281 ± 45 pg/ml), a value even 
lower than the one in the controls.  

Neuroprotection can be defined as any intervention that prevents death of neurons, mitigate neurodegenerative 
processes, and delay the progression of disease or clinical symptoms.  It is considered that there are seven mechanisms 
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through which neuroprotection is achieved: antiapoptosis, antinflamatory responses, blocking of glutamate-mediated 
toxicity, trophic factors, blocking of aggregating proteins, antioxidant mechanisms and other miscellaneous [67].  
Different studies offer solid proof of the neuroprotective properties of CBD [11, 17, 19, 20-23, 27]. Two main studies 
have evaluated the CBD neuroprotective mechanism through antioxidation in the central nervous systems in vivo.  El-
Remessy and col. [45] showed that in male Sprague-Dawley rats, glutamate caused apoptosis of the retina cells due to 
the formation of peroxinitrite. CBD attenuated this reaction aside from any activation of cannabinoid receptors.  On the 
other hand, Cassol-Jr and col. [44] found that the acute (6 hours) and the prolonged (10 days) exposure to different 
concentrations of CBD (2.5, 5.0 and 10.0 mg/Kg) reduced significantly two biomarkers of oxidative stress (TBARS and 
carbonyl proteins) in lung, liver, kidney, heart, spleen and brain. In addition, CBD reduced cognitive failure and mortality 
in male Wistar rats that underwent sepsis due to cecum perforation. The present work shows further evidence of 
antioxidant benefits of CBD in a piscine animal model (Carassius auratus) using brain F2-IsoPs as biomarkers of effect.  

Understanding the structure and geometry of the chemical functions in the CBD molecule may help to decipher the 
mechanisms for its antioxidant properties. CBD has three different moieties: limonene, phenol and aliphatic group 
(Figure 1) [11]. Contrary to other cannabinoids, CBD has two hydroxyl phenolic groups. Borges and da Silva [11] 
propose that the direct transfer of either one of the H atoms or one of the electrons from the phenolic groups of the CBD 
molecule to the free oxidative radical R• is the mechanism to reduce or prevent oxidative stress. Phenolic groups are 
known for its antioxidant properties [68]. Phenolic acids are efficient antioxidants that quench excessive free radical-
induced body damage and chronic diseases [69]. 

4 Conclusion 

In short, results of the present investigation showed the antioxidant and hence neuroprotective effects of the 
cannabinoid CBD in a fish research model. Taking into consideration the key role that ROS play in the physiopathology 
of neurodegenerative diseases, present results could support the use of CBD as a therapeutic. Further research is needed 
to promote and encourage this use into clinical trials and other approval phases. 
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