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Abstract 

The mathematical model of bed-shrinking in a countercurrent reactor proposed by Lee (Bioresource Technology 71 
(2000) 29 - 39) is explored. This model is based on system of nonlinear differential equations. Analytically, the coupled 
nonlinear rate equations are solved. To produce approximate analytical expressions for hemicelluloses, oligomers, and 

xylose concentrations for all the values of non-dimensional parameters ,, and  , the homotopy perturbation 

technique is applied. Our analytical results were compared to existing experimental data and found to be very similar. 
The dilute-acid pretreatment/hydrolysis of lignocellulosic biomass is studied using this mathematical model in the 
reactor. 

Keywords: Mathematical modeling; Homotopy perturbation method; Lignocellulosic biomass; Nonlinear differential 
equations. 

1. Introduction

Lignocellulose, sometimes called lignocellulosic biomass, is the dry matter (biomass) of plants. It is the world's most 
common required material for the creation of biofuels and bio-ethanol. This substance is made up of carbohydrate 
polymers (cellulose, hemicellulose) and an aromatic polymer. In dilute-acid lignocellulosic biomass, Lee et al. [1] created 
a mathematical model of a countercurrent shrinking-bed reactor. Rongfuchen et al. [2] established a mathematical 
model for dilute-acid hydrolysis of lignocellulosic biomass using a shrinking-bed reactor.  Song et al. [3, 4] addressed 
the countercurrent reactor in lignocellulosic biomass acid saccharification. Song and Lee, as well as Greenwald et al. [5], 
devised a countercurrent reactor that produced high yields and sugar concentrations. 

To the best of our knowledge, no analytical findings for the concentration of hemicelluloses, oligomer, and xylose at 
steady-state for all conceivable parameter values were available. We offer a novel approximate analytical result of 
concentrations for all parameter values in this investigation.  

2. Mathematical Formulation of the Problem

The procedure for reacting of the dilute-acid hydrolysis of hemicelluloses model can be shown in [1]. The reaction is 

,DXOH
kkk
 43H

  (1) 

http://creativecommons.org/licenses/by/4.0/deed.en_US
https://oarjpublication.com/journals/oarjet/
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Open Access Research Journal of Engineering and Technology, 2021, 01(02), 001–011 

2 

where   21H k*F1k*Fk  and F is the fraction of the fast - hydrolyzed hemicelluloses portion. The following 

differential equations are expressed based on the total amount of solid material and hemicellulose (H) material. 

  01 HH  CKf
dx

dv


                                                                                                                                                                     
(2) 

 
0HH

H  CK
dx

vCd

                                                                                                                                                                                  
(3)                                                                                   

with respect to boundary conditions: 

0x L v v 
                                                                                                                                                                                                  

(4) 

0HH CCLx 
                                                                                                                                                                                        

(5) 

where is the voidage in the bed;   is the feedstock's solid density; and f  is the ratio of total mass solubilized over 

hemicelluloses solubilized during the hydrolysis. The hemicellulose content in the solid ( HC ) is defined on the basis of 

the reactor volume. 

The following is the material balance for oligomer (O) and xylose (X) in the liquid stream:   

003HH
0  CkCk

dx

dC
u 

                                                                                                                                                                 
(6)                                                                                   

X
3 0 X 04

dC
k C k C

dx
  

                                                                                                                                                                            
(7) 

with the following boundary conditions 

At 0x , 00 C
                                                                                                                                                                                          

(8) 

At 0x , 0X C
                                                                                                                                                                                         

(9) 

The dimensionless form of hemicelluloses, oligomer, and xylose concentration is presented below: 

 
 H

22
HH

3H 2
1

YYY
dZ

dY










                                                                                                                                       

(10) 

O3H
O YY

dZ

dY







                                                                                                                                                                              
(11) 

X4O3
X YY

dZ

dY
 

                                                                                                                                                                           
(12) 

with respect to boundary conditions: 

At 1, 1  HYZ
                                                                                                                                                                                       

(13) 

At 0,0  OYZ
                                                                                                                                                                                      

(14) 

At 0,0  XYZ
                                                                                                                                                                                     

(15) 

The shrinkage factor (q) is the ratio of linear velocity of solid ( v ) at any point in the reactor to the initial linear solid 

feeding velocity ( 0v ). The hemicellulose content ( HY ) determines the shrinkage factor in solids. 
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(16) 

where
0

/)1( HfC 
                                                                                                                                                                     

(17) 

3. Approximate analytical expression steady-state concentration of hemicelluloses, oligomer and 
xylose using homotopy perturbation method (HPM) 

Eqs (9–10) are used to represent the nonlinear equations. Finding an exact solution to these nonlinear equations is 

difficult. Nonlinear equations are notoriously difficult to solve, especially in a variety of scientific and technical contexts. 

A number of approximate analytical approaches [6], such as the homotopy perturbation method [7-11], the residual 

method [12], the Taylor series method [13–16], the AGM method [17–19], and a novel analytical method [20–22], have 

recently been used to solve the nonlinear equation. In this study, the homotopy perturbation approach is utilised to 

discover solutions to the nonlinear equations (9) - (10). 

 

In physical chemistry and biology nonlinear phenomena are extremely important. Constructing a specific, accurate 

solution for these equations is still a challenge.Finding a specific, accurate solution for these equations is still a challenge. 

It is critical to find a precise solution with a physicochemical or biological interpretation. Ji-Huan was the first to 

introduce the HPM, which has subsequently been utilised to solve various nonlinear differential equations of various 

branches in mathematics and chemical science  [23]. It is very powerful and novel method to obtain highly accurate 

solutions that are valid across the whole solution domain. Using this approach (see Appendix B), the following 

expression for the concentration of hemicelluloses, oligomer and xylose can be obtained: 
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(18)
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(20) 

where 
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(21) 

4. Results and discussion 

Eqs. (18) to (20) represent the simple analytical expressions pertaining to the dimensionless concentration of 

hemicelluloses in solid, oligomer in liquid and xylose in liquid for all values of dimensionless parameters ,, and . 

It is interesting to see how each parameter affects the concentration of hemicelluloses, oligomers, and xylose for 
different parameter values. 

The kinetic pattern of lignocellulosic biomass dilute-acid hydrolysis is dependent on the substrate concentration. The 

concentration of the substrate, on the other hand, is determined by dimensionless parameter ,, and  .The 

dimensionless parameter    is determined by the hemicellulose hydrolysis rate constant, reactor length, and liquid 

linear velocity. The dimensionless parameter  depends upon liquid linear velocity and initial linear solid feeding 

velocity. The parameter is proportional to solid density, void fraction in bed, percentage of hemicelluloses content in 

original biomass and ratio of solubilized biomass to solubilized hemicelluloses (or cellulose). 

The dimensionless concentration of hemicelluloses HY versus Z for different values of  , and   is depicted in 

Figures 1(a) - 1(c). From Figures 1(a) - 1(c), it is inferred that the concentration of hemicelluloses decreases when  ,

and increases for some fixed values of other parameters.  

 

Figure 1 Comparison of steady-state concentration of hemicelluloses using Eq. (10) for (a) different values of   with 

experimental results [1], (b) for different values of  (c) for different values of . 
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Figure 2 (a) Comparison of  normalized steady- state bed shrinking factor q versus distance z using Eq.(16) (a) for  

different values of with experimental results[1]. (b) for different values of  . (c) for different values of   

In Figures 2(a)-2(c), the shrinking factor q versus Z for different values of parameters are plotted.  From these figures it 

is observed that the shrinking factor decreases when ,, and increases for some fixed values of other parameters. 

 

Figure 3 (a) Comparison of steady-state concentration of oligomer using Eq. (11) for different values of  with 

experimental result [1]. (b) for different values of . (c) for different values of . 
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In Figures 3(a) - 3(c), the concentration of oligomer in liquid OY versusZ for different values of parameters are plotted.  

From these figures it is deduced that the concentration of oligomer increases when ,, and increases for some 

fixed values of other parameters. 

In Figures 4(a) - 4(e), the concentration of xylose in liquid XY versus Z for different values of parameters are plotted. 

When  ,,, 43 and increases for some fixed values of other parameters, concentration of xylose increases. 

 

Figure 4 (a) Comparison of steady-state concentration of xylose using Eq.(12) (a) for different values of  with 

experimental result [1]. (b) for different values of 3 . (c) for different values of 4. (d) for different values of . (e) 

for different values of . 

The solid feeding velocity, linear liquid velocity, temperature, sulphuric acid concentration, and bed shrinking are the 
process factors investigated in this study. The output parameters of reactor performance are sugar concentration, 
yields, and reactor processing capacity. 
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5. Conclusion 

We present a theoretical model that describes the behaviour of a continuous countercurrent shrinking-bed reactor in 
this study. With the use of homotopy perturbation techniques, a nonlinear time independent problem was solved 
analytically. Approximate analytical expressions for the concentrations of the substrate and products are derived. This 
approach is both easy to use and promising for solving the non-linear equations. The purpose of this model is to provide 
a foundation for designing and operating this unique reactor system. 

6. Appendix A  

6.1. Basic concepts of the HPM 

The core principle of the HPM is presented in this appendix. This method has overcome the constraints of classic 
perturbation methods. However, because it can fully use traditional perturbation approaches, there has been a 
significant amount of study to solve a variety of severely nonlinear equations.  The following function is used to describe 
this method: 

     rrfuA 0                                                                                                                                                   (A1) 

With the following boundary conditions: 













r,

n

u
,uB 0

                                                                                                                                                  

(A2) 

where A, B, f (r) and   respectively, indicate a generic differential operator, a boundary operator, a known analytical 

function, and the domain boundary  . The operator A may be split into two parts: a linear portion L and a non-linear 
part N. As a result, Eq. (A1) may be rewritten as 

      0 rfuNuL                                                                                                                                                                      (A3) 

Using the homotopy method, a homotopy     R,:,rv  10p  is built in such a way that

              0pp1p, 0  rfvAuLvLvH
                                                                                                                   

(A4) 

   r,,10p
                                                                                                                                                                             

(A5)
 

where  p 0,1 is an embedding parameter or homotopy parameter and is an initial approximation of Eq.(A1), that 

meets the boundary requirements. Eqs. (A4) and (A5) may obviously be deduced to provide (A6) and (A7). 

      0,0 0  uLvLvH
                                                                                                                                                                    

(A6) 

      01  rfvA,vH
                                                                                                                                                                       

(A7) 

Eq. (A4) or (A5) forms a linear equation when 0p  , and a nonlinear equation when 1p  . As a result, the process of 

moving p from zero to unity is identical to that of. To begin, the embedding parameter p can be considered to be a tiny 
parameter, and the solutions of Eqs. (A4) and (A5) can be expressed as a power series of p: 

.....pp 210  vvvv
                                                                                                                                                                         

(A8) 

when 1p  is used, the following is the approximate solution to Eq. (A1): .....lim 210
1




vvvvu
p                                                                                                  

(A9) 
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The homotopy perturbation technique is the result of combining the perturbation method and the homotopy method. 

6.2. Appendix B 

6.2.1. Approximate analytical solutions of the Eqn (10) using the HPM. 

To get the solution to Eq. (10), first create the homotopy as follows:
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(B1) 

Eq. (B1) has the following approximate solution: 

.....YYYY HHH 
2

2

10H pp
                                                                                                                                                          

(B2) 

When Eq. (B2) is substituted in Eq. (B1), the outcome is: 
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The coefficients of similar powers of p are compared: 

0:p
0

200  H

H YA
dz

dY


                                                                                                                                                                  
(B4) 

02:p 2

0

3

01

211  HHH

H AYAYYA
dz

dY


                                                                                                                               
(B5) 

Using the boundary conditions ,0,1,1
10
 HH YYZ we can solve Eqs. (B4) and (B5). Solving the Eqs (B4) and 

(B5), we get the following result. 

                                                                                                                                                                                  (B6) 

 

         141
2

1 11)1(
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222
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H eeezY

                                                                                                                 

(B7) 

According to the HPM, the following may be concluded: 

   zYzYyY HH
p

10
1

H lim 


                                                                                                                                                                

(B8) 

The final findings can be represented in the text as Eq. (9) after combining Eqs. (B6) and (B7) in (B8). Similarly, we may 
derive Eq. (10) in the text by putting Eq. (9) into Eq. (7). Similarly we get Eq. (11) in the text after inserting Eq.(10) into 
Eq. (8). 

 

   zA

H ezY  1

0

2
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6.3. Nomenclature 

Symbols Units Definition 

cC  g/100 ml Concentration of cellulose 

0cC  g/100 ml Initial concentration of cellulose 

CH g/100 ml Concentration of hemicelluloses in solid 

0HC  g/100 ml Initial concentration of hemicelluloses 

C0 g/100 ml Concentration of oligomer  

Cx g/100 ml Concentration of  xylose 

Ei kcal/g mol Activation energy for ki 

H None Hemicelluloses 

H1 None Rapidly hydrolyzed hemicelluloses 

H2 None Slowly hydrolyzedhemicelluloses 

H0 None 
The percentage of hemicelluloses in the 
original biomass 









RT

E
kAk oi

m

i
1exp  min-1 

Hydrolysis of hemicelluloses rate 
constant 

koi  1min %
ni

wt
  Frequency factor for ki 

kC,kG min-1 Cellulose hydrolysis rate constant 

kH min-1 Rate constant 

L cm Reactor length 

ni None Exponent of acid concentration 

O None Hemicellulose oligomer 

0v

v
q   cm/min Bed shrinking factor 

R Jk-1mol-1 Constant of universal gas 

S wt% Concentration of acid 

T K Temperature 

u cm/min Linear velocity of liquid 

v cm/min Linear velocity of Solid  

v0 cm/min Initial linear solid feeding velocity 

v0,opt cm/min 
Optimal initial linear solid feeding 
velocity 

W 
(g biomass) / 
(min*(ml reactor 
volume)) 

Reactor processing capacity 

X g/100 ml Xylose 
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0 0 0

, ,oH X
H o X

H H H

CC C
Y Y Y

C C C
    None Dimensionless concentration 

Z=x/L None Dimensionless reactor length 

3 4
3 4

1 1
,

k k
k k

    None Dimensionless rate constant 

  None Void fraction in bed 0.35 

YH 
None 

Dimensionless concentration of 
hemicelluloses 

YO,
 

None 
Dimensionless concentration of 
oligomer 

Yx 
None Dimensionless concentration of xylose 

1k L
u

   
None Dimensionless parameters 

 

0

1

fH

 





 None Dimensionless parameters 

0v

u


 None Dimensionless parameters 

l
 

None Dimensionless parameters 

m
 None Dimensionless parameters 

n
 None Dimensionless parameters 

0m
 None Dimensionless parameters 

1m
 

None Dimensionless parameters 

2m  None Dimensionless parameters 

3m  None Dimensionless parameters 
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